Copied to
clipboard

G = C32⋊Dic7order 252 = 22·32·7

The semidirect product of C32 and Dic7 acting via Dic7/C7=C4

metabelian, soluble, monomial, A-group

Aliases: C32⋊Dic7, C7⋊(C32⋊C4), C3⋊S3.D7, (C3×C21)⋊2C4, (C7×C3⋊S3).2C2, SmallGroup(252,32)

Series: Derived Chief Lower central Upper central

C1C3×C21 — C32⋊Dic7
C1C7C3×C21C7×C3⋊S3 — C32⋊Dic7
C3×C21 — C32⋊Dic7
C1

Generators and relations for C32⋊Dic7
 G = < a,b,c,d | a3=b3=c14=1, d2=c7, ab=ba, cac-1=a-1, dad-1=ab-1, cbc-1=b-1, dbd-1=a-1b-1, dcd-1=c-1 >

9C2
2C3
2C3
63C4
6S3
6S3
9C14
2C21
2C21
9Dic7
6S3×C7
6S3×C7
7C32⋊C4

Character table of C32⋊Dic7

 class 123A3B4A4B7A7B7C14A14B14C21A21B21C21D21E21F21G21H21I21J21K21L
 size 19446363222181818444444444444
ρ1111111111111111111111111    trivial
ρ21111-1-1111111111111111111    linear of order 2
ρ31-111-ii111-1-1-1111111111111    linear of order 4
ρ41-111i-i111-1-1-1111111111111    linear of order 4
ρ5222200ζ767ζ7572ζ7473ζ7473ζ7572ζ767ζ7572ζ7572ζ7473ζ7473ζ7572ζ767ζ7473ζ7572ζ767ζ7473ζ767ζ767    orthogonal lifted from D7
ρ6222200ζ7473ζ767ζ7572ζ7572ζ767ζ7473ζ767ζ767ζ7572ζ7572ζ767ζ7473ζ7572ζ767ζ7473ζ7572ζ7473ζ7473    orthogonal lifted from D7
ρ7222200ζ7572ζ7473ζ767ζ767ζ7473ζ7572ζ7473ζ7473ζ767ζ767ζ7473ζ7572ζ767ζ7473ζ7572ζ767ζ7572ζ7572    orthogonal lifted from D7
ρ82-22200ζ767ζ7572ζ747374737572767ζ7572ζ7572ζ7473ζ7473ζ7572ζ767ζ7473ζ7572ζ767ζ7473ζ767ζ767    symplectic lifted from Dic7, Schur index 2
ρ92-22200ζ7572ζ7473ζ76776774737572ζ7473ζ7473ζ767ζ767ζ7473ζ7572ζ767ζ7473ζ7572ζ767ζ7572ζ7572    symplectic lifted from Dic7, Schur index 2
ρ102-22200ζ7473ζ767ζ757275727677473ζ767ζ767ζ7572ζ7572ζ767ζ7473ζ7572ζ767ζ7473ζ7572ζ7473ζ7473    symplectic lifted from Dic7, Schur index 2
ρ1140-21004440001-2-2-2-2-21111-21    orthogonal lifted from C32⋊C4
ρ12401-200444000-211111-2-2-2-21-2    orthogonal lifted from C32⋊C4
ρ1340-210074+2ζ7376+2ζ775+2ζ72000767767757275727677473757276+2ζ7747375+2ζ72747374+2ζ73    complex faithful
ρ14401-20076+2ζ775+2ζ7274+2ζ7300075727572747374+2ζ7375+2ζ7276+2ζ7747375727677473767767    complex faithful
ρ1540-210075+2ζ7274+2ζ7376+2ζ7000747374737677677473757276+2ζ774+2ζ737572767757275+2ζ72    complex faithful
ρ1640-210076+2ζ775+2ζ7274+2ζ7300075+2ζ7275727473747375727677473757276774+2ζ7376776+2ζ7    complex faithful
ρ17401-20075+2ζ7274+2ζ7376+2ζ7000747374+2ζ7376+2ζ7767747375+2ζ727677473757276775727572    complex faithful
ρ18401-20075+2ζ7274+2ζ7376+2ζ70007473747376776+2ζ774+2ζ7375727677473757276775+2ζ727572    complex faithful
ρ19401-20076+2ζ775+2ζ7274+2ζ73000757275+2ζ7274+2ζ737473757276774737572767747376+2ζ7767    complex faithful
ρ20401-20074+2ζ7376+2ζ775+2ζ7200076776775+2ζ72757276+2ζ7747375727677473757274+2ζ737473    complex faithful
ρ2140-210076+2ζ775+2ζ7274+2ζ730007572757274737473757276774+2ζ7375+2ζ7276+2ζ77473767767    complex faithful
ρ22401-20074+2ζ7376+2ζ775+2ζ7200076776+2ζ7757275+2ζ7276774+2ζ7375727677473757274737473    complex faithful
ρ2340-210074+2ζ7376+2ζ775+2ζ7200076+2ζ776775727572767747375+2ζ7276774+2ζ73757274737473    complex faithful
ρ2440-210075+2ζ7274+2ζ7376+2ζ700074+2ζ73747376776774737572767747375+2ζ7276+2ζ775727572    complex faithful

Smallest permutation representation of C32⋊Dic7
On 42 points
Generators in S42
(8 42 35)(9 36 29)(10 30 37)(11 38 31)(12 32 39)(13 40 33)(14 34 41)
(1 16 23)(2 24 17)(3 18 25)(4 26 19)(5 20 27)(6 28 21)(7 22 15)(8 42 35)(9 36 29)(10 30 37)(11 38 31)(12 32 39)(13 40 33)(14 34 41)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 14)(7 13)(15 40 22 33)(16 39 23 32)(17 38 24 31)(18 37 25 30)(19 36 26 29)(20 35 27 42)(21 34 28 41)

G:=sub<Sym(42)| (8,42,35)(9,36,29)(10,30,37)(11,38,31)(12,32,39)(13,40,33)(14,34,41), (1,16,23)(2,24,17)(3,18,25)(4,26,19)(5,20,27)(6,28,21)(7,22,15)(8,42,35)(9,36,29)(10,30,37)(11,38,31)(12,32,39)(13,40,33)(14,34,41), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42), (1,12)(2,11)(3,10)(4,9)(5,8)(6,14)(7,13)(15,40,22,33)(16,39,23,32)(17,38,24,31)(18,37,25,30)(19,36,26,29)(20,35,27,42)(21,34,28,41)>;

G:=Group( (8,42,35)(9,36,29)(10,30,37)(11,38,31)(12,32,39)(13,40,33)(14,34,41), (1,16,23)(2,24,17)(3,18,25)(4,26,19)(5,20,27)(6,28,21)(7,22,15)(8,42,35)(9,36,29)(10,30,37)(11,38,31)(12,32,39)(13,40,33)(14,34,41), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42), (1,12)(2,11)(3,10)(4,9)(5,8)(6,14)(7,13)(15,40,22,33)(16,39,23,32)(17,38,24,31)(18,37,25,30)(19,36,26,29)(20,35,27,42)(21,34,28,41) );

G=PermutationGroup([[(8,42,35),(9,36,29),(10,30,37),(11,38,31),(12,32,39),(13,40,33),(14,34,41)], [(1,16,23),(2,24,17),(3,18,25),(4,26,19),(5,20,27),(6,28,21),(7,22,15),(8,42,35),(9,36,29),(10,30,37),(11,38,31),(12,32,39),(13,40,33),(14,34,41)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,14),(7,13),(15,40,22,33),(16,39,23,32),(17,38,24,31),(18,37,25,30),(19,36,26,29),(20,35,27,42),(21,34,28,41)]])

Matrix representation of C32⋊Dic7 in GL4(𝔽337) generated by

1000
0100
0001
2970336336
,
126900
533500
0801
2978336336
,
8000
4032900
23202950
22704242
,
32902690
003361
105080
11033680
G:=sub<GL(4,GF(337))| [1,0,0,297,0,1,0,0,0,0,0,336,0,0,1,336],[1,5,0,297,269,335,8,8,0,0,0,336,0,0,1,336],[8,40,232,227,0,329,0,0,0,0,295,42,0,0,0,42],[329,0,105,110,0,0,0,336,269,336,8,8,0,1,0,0] >;

C32⋊Dic7 in GAP, Magma, Sage, TeX

C_3^2\rtimes {\rm Dic}_7
% in TeX

G:=Group("C3^2:Dic7");
// GroupNames label

G:=SmallGroup(252,32);
// by ID

G=gap.SmallGroup(252,32);
# by ID

G:=PCGroup([5,-2,-2,-3,3,-7,10,302,67,323,248,5404]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^14=1,d^2=c^7,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a*b^-1,c*b*c^-1=b^-1,d*b*d^-1=a^-1*b^-1,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C32⋊Dic7 in TeX
Character table of C32⋊Dic7 in TeX

׿
×
𝔽