metabelian, soluble, monomial, A-group
Aliases: C32⋊Dic7, C7⋊(C32⋊C4), C3⋊S3.D7, (C3×C21)⋊2C4, (C7×C3⋊S3).2C2, SmallGroup(252,32)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C3×C21 — C7×C3⋊S3 — C32⋊Dic7 |
C3×C21 — C32⋊Dic7 |
Generators and relations for C32⋊Dic7
G = < a,b,c,d | a3=b3=c14=1, d2=c7, ab=ba, cac-1=a-1, dad-1=ab-1, cbc-1=b-1, dbd-1=a-1b-1, dcd-1=c-1 >
Character table of C32⋊Dic7
class | 1 | 2 | 3A | 3B | 4A | 4B | 7A | 7B | 7C | 14A | 14B | 14C | 21A | 21B | 21C | 21D | 21E | 21F | 21G | 21H | 21I | 21J | 21K | 21L | |
size | 1 | 9 | 4 | 4 | 63 | 63 | 2 | 2 | 2 | 18 | 18 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | -i | i | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ4 | 1 | -1 | 1 | 1 | i | -i | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ5 | 2 | 2 | 2 | 2 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ6 | 2 | 2 | 2 | 2 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ7 | 2 | 2 | 2 | 2 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ8 | 2 | -2 | 2 | 2 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | symplectic lifted from Dic7, Schur index 2 |
ρ9 | 2 | -2 | 2 | 2 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | symplectic lifted from Dic7, Schur index 2 |
ρ10 | 2 | -2 | 2 | 2 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | symplectic lifted from Dic7, Schur index 2 |
ρ11 | 4 | 0 | -2 | 1 | 0 | 0 | 4 | 4 | 4 | 0 | 0 | 0 | 1 | -2 | -2 | -2 | -2 | -2 | 1 | 1 | 1 | 1 | -2 | 1 | orthogonal lifted from C32⋊C4 |
ρ12 | 4 | 0 | 1 | -2 | 0 | 0 | 4 | 4 | 4 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | 1 | 1 | -2 | -2 | -2 | -2 | 1 | -2 | orthogonal lifted from C32⋊C4 |
ρ13 | 4 | 0 | -2 | 1 | 0 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 0 | 0 | 0 | 2ζ76-ζ7 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | 2ζ75-ζ72 | -ζ76+2ζ7 | 2ζ74-ζ73 | -ζ75+2ζ72 | -ζ74-ζ73 | -ζ74+2ζ73 | complex faithful |
ρ14 | 4 | 0 | 1 | -2 | 0 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 0 | 0 | 0 | -ζ75-ζ72 | 2ζ75-ζ72 | 2ζ74-ζ73 | -ζ74+2ζ73 | -ζ75+2ζ72 | -ζ76+2ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | 2ζ76-ζ7 | -ζ76-ζ7 | complex faithful |
ρ15 | 4 | 0 | -2 | 1 | 0 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 0 | 0 | 0 | 2ζ74-ζ73 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76+2ζ7 | -ζ74+2ζ73 | 2ζ75-ζ72 | 2ζ76-ζ7 | -ζ75-ζ72 | -ζ75+2ζ72 | complex faithful |
ρ16 | 4 | 0 | -2 | 1 | 0 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 0 | 0 | 0 | -ζ75+2ζ72 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | 2ζ74-ζ73 | 2ζ75-ζ72 | 2ζ76-ζ7 | -ζ74+2ζ73 | -ζ76-ζ7 | -ζ76+2ζ7 | complex faithful |
ρ17 | 4 | 0 | 1 | -2 | 0 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 0 | 0 | 0 | -ζ74-ζ73 | -ζ74+2ζ73 | -ζ76+2ζ7 | 2ζ76-ζ7 | 2ζ74-ζ73 | -ζ75+2ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | 2ζ75-ζ72 | -ζ75-ζ72 | complex faithful |
ρ18 | 4 | 0 | 1 | -2 | 0 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 0 | 0 | 0 | -ζ74-ζ73 | 2ζ74-ζ73 | 2ζ76-ζ7 | -ζ76+2ζ7 | -ζ74+2ζ73 | 2ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ75+2ζ72 | -ζ75-ζ72 | complex faithful |
ρ19 | 4 | 0 | 1 | -2 | 0 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 0 | 0 | 0 | -ζ75-ζ72 | -ζ75+2ζ72 | -ζ74+2ζ73 | 2ζ74-ζ73 | 2ζ75-ζ72 | 2ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ76+2ζ7 | -ζ76-ζ7 | complex faithful |
ρ20 | 4 | 0 | 1 | -2 | 0 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 0 | 0 | 0 | -ζ76-ζ7 | 2ζ76-ζ7 | -ζ75+2ζ72 | 2ζ75-ζ72 | -ζ76+2ζ7 | 2ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ74+2ζ73 | -ζ74-ζ73 | complex faithful |
ρ21 | 4 | 0 | -2 | 1 | 0 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 0 | 0 | 0 | 2ζ75-ζ72 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74+2ζ73 | -ζ75+2ζ72 | -ζ76+2ζ7 | 2ζ74-ζ73 | -ζ76-ζ7 | 2ζ76-ζ7 | complex faithful |
ρ22 | 4 | 0 | 1 | -2 | 0 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 0 | 0 | 0 | -ζ76-ζ7 | -ζ76+2ζ7 | 2ζ75-ζ72 | -ζ75+2ζ72 | 2ζ76-ζ7 | -ζ74+2ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | 2ζ74-ζ73 | -ζ74-ζ73 | complex faithful |
ρ23 | 4 | 0 | -2 | 1 | 0 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 0 | 0 | 0 | -ζ76+2ζ7 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75+2ζ72 | 2ζ76-ζ7 | -ζ74+2ζ73 | 2ζ75-ζ72 | -ζ74-ζ73 | 2ζ74-ζ73 | complex faithful |
ρ24 | 4 | 0 | -2 | 1 | 0 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 0 | 0 | 0 | -ζ74+2ζ73 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | 2ζ76-ζ7 | 2ζ74-ζ73 | -ζ75+2ζ72 | -ζ76+2ζ7 | -ζ75-ζ72 | 2ζ75-ζ72 | complex faithful |
(8 42 35)(9 36 29)(10 30 37)(11 38 31)(12 32 39)(13 40 33)(14 34 41)
(1 16 23)(2 24 17)(3 18 25)(4 26 19)(5 20 27)(6 28 21)(7 22 15)(8 42 35)(9 36 29)(10 30 37)(11 38 31)(12 32 39)(13 40 33)(14 34 41)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 14)(7 13)(15 40 22 33)(16 39 23 32)(17 38 24 31)(18 37 25 30)(19 36 26 29)(20 35 27 42)(21 34 28 41)
G:=sub<Sym(42)| (8,42,35)(9,36,29)(10,30,37)(11,38,31)(12,32,39)(13,40,33)(14,34,41), (1,16,23)(2,24,17)(3,18,25)(4,26,19)(5,20,27)(6,28,21)(7,22,15)(8,42,35)(9,36,29)(10,30,37)(11,38,31)(12,32,39)(13,40,33)(14,34,41), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42), (1,12)(2,11)(3,10)(4,9)(5,8)(6,14)(7,13)(15,40,22,33)(16,39,23,32)(17,38,24,31)(18,37,25,30)(19,36,26,29)(20,35,27,42)(21,34,28,41)>;
G:=Group( (8,42,35)(9,36,29)(10,30,37)(11,38,31)(12,32,39)(13,40,33)(14,34,41), (1,16,23)(2,24,17)(3,18,25)(4,26,19)(5,20,27)(6,28,21)(7,22,15)(8,42,35)(9,36,29)(10,30,37)(11,38,31)(12,32,39)(13,40,33)(14,34,41), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42), (1,12)(2,11)(3,10)(4,9)(5,8)(6,14)(7,13)(15,40,22,33)(16,39,23,32)(17,38,24,31)(18,37,25,30)(19,36,26,29)(20,35,27,42)(21,34,28,41) );
G=PermutationGroup([[(8,42,35),(9,36,29),(10,30,37),(11,38,31),(12,32,39),(13,40,33),(14,34,41)], [(1,16,23),(2,24,17),(3,18,25),(4,26,19),(5,20,27),(6,28,21),(7,22,15),(8,42,35),(9,36,29),(10,30,37),(11,38,31),(12,32,39),(13,40,33),(14,34,41)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,14),(7,13),(15,40,22,33),(16,39,23,32),(17,38,24,31),(18,37,25,30),(19,36,26,29),(20,35,27,42),(21,34,28,41)]])
Matrix representation of C32⋊Dic7 ►in GL4(𝔽337) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
297 | 0 | 336 | 336 |
1 | 269 | 0 | 0 |
5 | 335 | 0 | 0 |
0 | 8 | 0 | 1 |
297 | 8 | 336 | 336 |
8 | 0 | 0 | 0 |
40 | 329 | 0 | 0 |
232 | 0 | 295 | 0 |
227 | 0 | 42 | 42 |
329 | 0 | 269 | 0 |
0 | 0 | 336 | 1 |
105 | 0 | 8 | 0 |
110 | 336 | 8 | 0 |
G:=sub<GL(4,GF(337))| [1,0,0,297,0,1,0,0,0,0,0,336,0,0,1,336],[1,5,0,297,269,335,8,8,0,0,0,336,0,0,1,336],[8,40,232,227,0,329,0,0,0,0,295,42,0,0,0,42],[329,0,105,110,0,0,0,336,269,336,8,8,0,1,0,0] >;
C32⋊Dic7 in GAP, Magma, Sage, TeX
C_3^2\rtimes {\rm Dic}_7
% in TeX
G:=Group("C3^2:Dic7");
// GroupNames label
G:=SmallGroup(252,32);
// by ID
G=gap.SmallGroup(252,32);
# by ID
G:=PCGroup([5,-2,-2,-3,3,-7,10,302,67,323,248,5404]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^14=1,d^2=c^7,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a*b^-1,c*b*c^-1=b^-1,d*b*d^-1=a^-1*b^-1,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of C32⋊Dic7 in TeX
Character table of C32⋊Dic7 in TeX